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Previous results on first-passage-time statistics for systems driven by 
dichotomous noise are extended in order to cover the escape from regions 
including fixed points of the stochastic flow. For such regions a treatment 
splitting the escape through one or the other boundary is required. The 
obtained escape probabilities and mean exit times are relevant for the complete 
characterization of stochastic systems undergoing bifurcations. 

KEY WORDS: Escape probabilities; mean first passage times; dichotomous 
noise. 

1. I N T R O D U C T I O N  

The most interesting aspect in the analysis of nonl inear  dynamical  systems 
is the study of the asymptotic, i.e., long-time-limit,  behavior. If one con- 
siders that, in a first approach, the system is deterministic, bifurcation 
theory I1~ can be used to elucidate the number ,  characteristics, and stability 
of the asymptotic solutions. Once the bifurcation diagram has been 
obtained one can discuss the evolution of the system in terms of the initial 
conditions. In the more realistic stochastic situation, when one or more of 
the parameters fluctuate, the long-time behavior is usually obtained by 
calculating, when this is possible, the stat ionary probabili ty density for the 
relevant quantities (see, however, Hasmiskii t2~ for an approach based on 
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Lyapunov functions, or Lficke r for another based on the moments of the 
process itself). At this point different authors use different concepts to 
describe the stochastic analogs of the deterministic bifurcations, e.g., 
analysis of the moments of the distribution (4) or changes in the shape or 
the extrema of the stationary density, (5-8) or even by defining a stochastic 
bifurcation region. ~9" lo) 

However, the evolution of a stochastic system is richer than that of the 
deterministic counterpart, and a complete understanding of the stochastic 
behavior cannot be obtained by simply looking at stationary properties. 
The fact that a stochastic system can explore different regions may have 
important consequences in the temporal evolution of the process. There- 
fore, a knowledge of both large-deviations properties and local charac- 
teristics, i.e., exit statistics, escape probabilities, and mean first passage 
times (MFPT),  and stationary probability densities, is necessary in order 
to obtain a full description of stochastic systems. This is particularly clear 
when the noisy parameter can only take values in a finite interval, as many 
occur in an experimental situation, and the system can enter a region 
without possibility of return. ~) If this is the case, the analysis of the 
probability of escape from a given region and the mean time to escape is 
essential to characterize fully the time evolution of the process. 

With the above considerations in mind, in this work we study the 
escape probabilities and MFPT of arbitrary one-dimensional nonlinear 
systems perturbed by dichotomous noise (only two values allowed for the 
noise). The interest of such systems arises in situations where the correla- 
tion time of the stochastic perturbation is not negligible and/or the noise 
is known to be bounded. As for the latter condition, actual fluctuations 
may be bounded for physical reasons, and it has been found ~2) that pertur- 
bations taking values in a finite range and acting on a bifurcation 
parameter bring about qualitatively different behavior from that of a 
system driven by an unbounded, e.g., Gaussian, noise (see also ref. 13 for 
other implications of bounded noises). 

Whereas the MFPT can be exactly calculated for one-dimensional 
systems driven by Gaussian white noise, the problem for non-Markovian 
processes, i.e., colored noise perturbations, remains unsolved in general. 
Nevertheless, the special case of systems driven by dichotomous noise, first 
considered in the context of activation rates, ~m4" ~s) has received much atten- 
tion, and exact explicit results were obtained in ref. 16 and later by other 
authors, using different techniques, in a series of papers. (~7' ~s) Of all the 
techniques developed to treat the problem of escape times for systems 
driven by dichotomous noise (see also ref. 19 for another method valid for 
more general non-Markovian processes), we think that the stochastic tra- 
jectory analysis technique (STAT) presented in ref. 17, which looks directly 
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at the trajectories, is the most transparent, and, as will become clear later, 
the most useful in considering different boundary conditions, c2~ 21) 

However, trying to apply the above-cited results by Masoliver et al. ~ ~7~ 
on MFPT to bifurcation problems, we found a certain lack of generality: 
their derivation cannot be applied to the escape from regions surrounding 
fixed points (steady states) of the stochastic flow, i.e., states which are 
stationary for every possible realization of the noise. Moreover, if one 
calculates the MF PT for regions close to the fixed point x, and performs 
the limit of one of the boundaries of the region going to x, ,  the MFPT 
diverges even in situations for which one knows (from an analysis of the 
stationary probability) that at least a fraction of the trajectories escape 
from the region. 

The aim of this paper is to fill this lack of generality in the calculation 
of the MFPT for systems driven by dichotomous noise. In order to do this, 
we find it necessary to split the contributions of the trajectories leaving the 
region through each of its boundaries. The derivation is presented in 
Section 2. Section 3 is devoted to the analysis of the behavior of a linear 
system around a steady state of the stochastic flow. The linear case 
illustrates the influence of noise on the stability of the steady state and how 
this stability is reflected in the escape statistics. Finally, we summarize our 
main conclusions in Section 4. 

2. ESCAPE PROBABIL IT IES A N D  FIRST PASSAGE T I M E S  

We consider the one-dimensional general dynamical system 

.,~, = F(x , ,  ~,) (1) 

where F is a nonlinear function and ~, is a symmetric dichotomous noise 
which can take values + A with correlation time rc = 1/22. Time between 
switches in the noise value, A or - A ,  is governed by the distribution 
q~(t) = 2 exp ( -2 t ) ,  and the average residence time in each of these states is 
1/2. t7) The trajectories of the process x, can be decomposed into a 
countable set of time intervals [t,,_ ~, t,,] where the noise remains constant, 
i.e., only one of the two possible forces F + ( x ) = F ( x ,  zI) or F _ ( x ) =  
F(x, --A) acts upon the system (see Fig. 1 ). Stochasticity shows up through 
the time succession { t,,} in which the noise changes its value, whereas in 
each of the time. intervals the dynamics is deterministic and autonomous. 

The process x lives in the whole real line and we are interested in the 
(random) time rt~.b~(Xo) to go from an initial point Xo~ [a, b] to one of 
the boundaries of the interval [a, b]. A first simple qualitative analysis 
shows immediately that if the two forces F •  +_A) point in the 
same direction, say toward b, then the process will leave the region through 
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Fig. 1. Typical trajectory of a system perturbed by dichotomous noise. 

b in a time between the deterministic times corresponding to both flows F+ 
and F_ .  The interesting case arises when the forces point in different direc- 
tions, i.e., regions where the process x, goes back and forth and therefore 
the external noise can significantly delay and/or modify the exit from the 
region 5 (see Fig. I). Although it is possible to perform the calculation for 
both cases, we will limit ourselves to regions where F+(x) F_(x) <~ O. To fix 
ideas, we also choose F+(x)>10 and F_(x)<~0 for the rest of the paper. 

The key quantities in our calculation are fo(t I xo) dt and fb(t I Xo) dt 
defined as the probabilities of first reaching, in the time interval (t, t + dt), 
a or b starting at x0. We will use superscripts + and - to indicate, when 
necessary, the initial condition of the noise ~(0)= A or ~(0)= - A ,  respec- 
tively. Following similar calculations to those performed in ref. 17, one can 
derive closed equations for the Laplace transform of these distributions 

f? fa, b(s [Xo)= e-Stf,.b(t[Xo) dt. (2) 

A simple version of the derivation is presented in the appendix. There 
we prove that, for instance, f~: (s 1 xo) satisfy 

f~(S[Xo)=e_(~+,,r§ b dx, e_,X+,)r+~.~o~x,~g(s[x,) (3) 
Jxo F+(xl) 

5There is also another reason for the importance of regions where F+(x)F_(x)<0: they 
form the support of the stationary distribution of x. Therefore, these are the relevant regions 
when calculating escape rates in the stationary regime. 
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where 

i2 dx, e-(a+~)r-(xo~x'~(s I x,) f~-(s  I Xo)= - 2  s0 F_(x,------~ (4) 

~ ' dx 
T•  xl)= -o F• (5) 

is the (deterministic) time to go from Xo to x I under the force F• 
respectively. These times appear in expressions (3) and (4) as postive quan- 
tities, i.e., for every T+ (x ~ y), y is bigger than x (F+ > 0) and, conversely, 
in T _ ( x ~ y ) ,  x is always bigger than y. Notice also that the first term in 
(3) corresponds, in the time domain, to the delta function 

e -~' ~ ( t -  T+(xo ~ b)) 

which takes into account the escape event without any noise switch. 
Expressions for the other two distributions are obtained from the former 
switching simultaneously b to a and + to - .  

No trouble arises in the former expressions when one considers the 
escape problem from regions [a, b] where F+(x)F_(x) is strictly less than 
zero. Let us discuss now, in the light of Eq. (3) and (4), how the functions - +  
f~,b(Sl Xo) behave when a or b is a zero of one of the forces. It is easy to 
check that 

f b  (s I X o ) = f y ( s l x o ) = 0  if F+(b)=0 (6) 

and 

fo(SlXo)=.f2(S]Xo)=O if F _ ( a ) = 0  (7) 

which is an obvious result since, as we assume that within the interval 
[a,b], F + ( x ) > 0  and F ( x ) < 0 ,  no trajectory can cross any upper 
boundary b such that F + ( b ) = 0 ,  nor a lower boundary a such that 
F _ ( a ) = 0 .  

Let us now stress the differences between our approach and that of 
Masoliver et aL (~7) They derived a similar integral equation for the Laplace 
transform of the probability density 

f+( t  l Xo)= f + ( t  l Xo) + f ff(t l Xo) 

This is a true probability density, the one corresponding to the escape 
time through any of the boundaries, and it is therefore normalized. On the 
other hand, f~b(tlXo) are not normalized. In fact 

= f o  dt f +b(t l x~ f ~b(S=O I x~ (8) P~b(XO) 

822/79/3-4-13 
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is the probability of leaving the interval through boundary a or b, respec- 
tively. The conditional mean-first-passage times 6 

1 f o  -1- x ~S~=of~b(slxo) (9) T~b(Xo) -- p~b(X0 ) dt tf  ~b(t ] XO) = p x.--b(o) 

are related to the usual M F P T  by the expression 

T+(xo) = P~(xo) Tf(xo)  + P~(xo) T~(xo) (10) 

We see here the source of the divergences described in the introduc- 
tion. If a tends to a fixed point of the stochastic flow x,., the conditional 
mean time Tf(xo)  diverges and, if Pf (x )  does not tend to zero properly, 
we end up with an infinite MFPT. 

There is an important technical feature of these expressions that we 
want to remark. If we fix one of the boundaries, say b, and consider a as 
a variable, the function jTff is continuous with respect to a (and conse- 
quently also the corresponding exit probabilities Pb ~ , and times T ~  ) even 
when F+ or F_  vanishes at this boundary. Likewise, yT~, p ~ ,  and Tff are 
continuous functions of b. This allows us to calculate the exit probabilities 
and times in the neighborhood of a fixed point in a simple way. Consider, 
for instance, an interval [a, b] with a such that F+(a) =0 ,  i.e., a is a steady 
state, and it is the only one within the interval (there are no other zeros of 
these forces). To calculate the escape statistics through b we can therefore 
consider an interval of the form [a+e, b], calculate Pb and Tb, and then 
perform the limit e--, 0. 

Equations (3) and (4) are equivalent to second-order linear differential 
equations with boundary conditions. In fact, both functions fa(s I xo) and 
fb(s I Xo) satisfy the same equation but with different boundary conditions. 
For instance, if the initial condition for the noise is + d, this equation reads 

[F+(x0, s+ _lo 
~x~ + .F+(xo----~ F+(xo) F_(xo)J ~xo+F+(xo)F_(xo)J ' 

(11) 

and the boundary conditions are 

f+(s  l b) = 0 

f§  l x)= - ' t  + (s + '~) f ~+(s l a) 
Ox .~=, " F+(a) (12) 

6 It is important to realize that conditional means that T~b only count the time taken by the 
trajectories that actually reach the boundary a or b, respectively. 
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and 

?~-(s I b )=  1 

~x~ x: f~_(s l x)=(s + A) f ~-(s l +(a) (13) 

If the initial condition for the noise is - g ,  these expressions are 
the same switching F+ to F_  and a to b, Notice that these are singular 
boundary conditions if a is such that F+(a)=0. Nevertheless, due to the 
continuity argument stated before, f:(s I b) and fb(s ] a) are well behaved 
and we can obtain from them the corresponding escape probabilities and 
conditional first passage times. In other words, we can use the differential 
equations with boundaries ,: and b, for which the forces F+ do not vanish, 
and then perform the limits ~--+ a and b--+ b. 

The solution of the differential equation (I 1 ) can be easily found for 
the special case s = 0 ,  and this solution is precisely the escape prob- 
ability (8), 

2 
P<+(Xo) = 1 + 2g+(a) g+(xo) (14) 

P~- (Xo) = 1 - P+(xo) (15) 

with 

b 1 I, 

g+<xo) =I o. ex. I . . / ' ----+ +tY/ L : \F+(s )  F_(s )JJ  (16) 

As always, the corresponding expressions for PZ.b(Xo) (initial condi- 
tion for the noise - d )  are obtained switching a to b and + to - .  

The conditionaI M F P T  is calculated differentiating Eq. (11) with 
respect to s and setting s = 0. The solution reads 

Tfb(x0,  = l[fb"~ 
pyb(xo) 

where 

~+:<x)=/.dy [F '+<y) /~+  l__k_~] 
[~+_(~) 2\F+(y) F_(y)JJ (18) 

" + + ' I  " V:.~(x)=SdY F+(y)--F_(y) \F+(y) F_Iy)J~y P=,b(Y) 
(19) 
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and the constant C is fixed by the boundary conditions 

d 
"-~Xx~ b 

d 
d x x ~  a 

[ P2. b T2. b] (x) - 2[ P2"b T2b](b) - P2b(b) 
F_(b) 

[po~bT~b](x)_2[P~bT~b](a)--P~b (a) 
F+(a) 

(20) 

(21) 

Equations (14) and 17 are the main results of this work, and together with 
the calculation of the stationary probability distributions, following the 
method explained in detail in ref. 7, solve completely the problem of 
calculating the behavior of one-dimensional nonlinear systems perturbed 
by dichotomous noise. 

A comment on the boundary conditions (b.c.) is in order. It should be 
clearly understood that the conditions (12) and (13) come directly from (3) 
and (4), i.e., are "natural" b.c. given by the dynamics of the system under 
consideration. They therefore include not only the absorbing b.c. con- 
sidered in most work on this topic, (15-~s) but also the "fixed-point b.c.", 
when one of the boundaries of the interval is a steady state of the stochastic 
flow and cannot be reached, and any other situation in which there is not 
a particular behavior at the boundaries imposed from outside the system. 

The situation is different, for instance, when we are dealing with 
reflecting (instantaneous or delayed) boundariesJ 2~ However, it is 
remarkable that our general results for fa+-b(tiXo) with natural b.c. can 
be used to study those relevant situations of reflecting or even mixed 
boundary conditions. Let us consider, for instance, that trajectories 
reaching the lower boundary a may be transmitted or reflected according 
to waiting time probability distributions Jr(t) and JR(t) respectively (the 
sum of the time integral of these distributions is obviously normalized), 
whereas boundary b remains natural (absorbing), and let ~ b ( t  IX0) be the 
new escape time probability distributions (the equivalents of our previous 
f~+b), which are the fundamental quantities for obtaining the escape 
probabilities and times. Now the event "escape through boundary b" can 
occur in two ways: the system escapes without touching a, or the system 
reaches a, is reinjected, and then leaves through b. These two possibilities 
bring about terms involving convolutions of the time distributions. With a 
similar reasoning for the escape through a, and after Laplace transforming, 
the expressions that give ~ ( s  I Xo) become algebraic: 

~ ( s  I Xo) =f~(s I Xo)+jTf(s I Xo) ~R(s) O~(s I a) (22) 

7P+(slxo)=ff(slxo)4)r(s)+fff(slxo)~R(s)Tp.+(sla) (23) 
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where the quantities ~+ f~.b are the solutions o f ( l  1) with natural b.c. (12) and 
(13). Setting xo=a in (22) and (23), we easily calculate ~ ( s l a )  and 
~+(s I a), yielding the final expressions 

~R(s) f~(s l a) 
~ ~(s I xo)=f~(s [ Xo) + f + (s I xo) l _~R(s) f +(s l a) (24) 

and 

8~s) f +(s IXo) 
~.e(s [Xo)-  1 -~R(s)f+(s [a) -(25) 

For instantaneous and perfect reflection, i.e., ~br(t)=0, ~kR(t)=6(t), 
and jR(s)=  1, we recover the results in ref. 20, whereas if the trajectories 
that reach the boundary a are reinjected in the interval when the noise 
value changes, that is, ~br(t)=0, ~bR(t)=2exp(--2t), and jR(s)=  
2(2+s)  -~, we get those in ref. 21. More complicated cases when both 
transmission and reflection are possible could be analyzed from (24) 
and (25). 

3. LINEAR D Y N A M I C S  

Most of the aspects discussed so far can be best illustrated by 
analyzing the linear case. We will study in this section the escape statistics 
of a linear system from the neighborhood of a steady state. 

Consider the system 

~ ,=  (c+~,)  x, (26) 

for which x s = 0 is a steady state, i.e., a zero of the two forces F+ = c + A. 
We concentrate our attention on the escape from an interval [0, b]. It is 
convenient to use the notation a =  1/(c+A) and f l = - 1 / ( c - z l ) ,  so that 
F+(x)=x/o~ and F ( x ) = - x / f l  with a, f l>0.  With this, the quantities 
f~(SlXo) satisfy the same equation independently of the initial condition 
of the noise 

02 0 ] 
X o ~ x o 2 + X o [ 1 - ( s + 2 ) ( a - f l ) ] ~ x 0 - S ( s + Z 2 ) a f l  L ( s l x 0 ) = 0  (27) 

The general solution of this equation is 

f~(s I Xo) = A(s) x;' + B(s) x;: (28) 
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where 

(s + ,1)(ct - f l )  + 1 
r , , 2 -  2 - 2  [ (s + ,1)z (o~ + fl)2-4ctfl,12] ,/2 (29) 

Therefore, for this linear case, we can explicitly obtain the general 
expression for the Laplace transform of the probabil i ty density. The func- 
tions A(s) and B(s) are determined by the boundary  conditions (12) and 
(13). 

Since (28) with A(s) and B(s) calculated as indicated gives indeed the 
solution for the interval [a,  b ] ,  we now use the continuity proper ty  and 
take the limit a - ~  0 to obtain 

/ Xo \ rff s) 
(30) 

p,1 
f~ ( s  I Xo) = r ,(s)  +/3(s  + ,l) (31) 

which are the expressions that  contain all the statistics of  the problem. 
Notice that  for the critical case ~ = p, the exponent  r~ = e[s(s + 22)] ,/2 and 
fb(SlXo) is not analytic at s - - 0 ,  leading to an infinite M F P T .  

Following the procedure described in the previous section, we get 

f(xolb);' ~- :", ~ >/~ 
P:(x~  = [1,  ct ~< fl (32) 

Py (xo) = ~ (131~176 ):~-#~' OL > fl  
[1,  ~ < f l  (33) 

This latter probabil i ty can be factorized into a contr ibution from the 
first return to the initial condition P~-o(Xo)--which does not depend on 
2 - - a n d  a further mot ion  of x from Xo to b: 

P;(Xo) = PL(Xo) P~(Xo) = ~ P;(Xo) 

Averaging now over the two possible initial conditions of the noise, we 
finally get 

pb(xo)= ~E (ct + fl)/2ct](xo/b )~(~-P~, ct > fl 
(1, ct <~fl 

(34) 

Figure 2a shows the probabilities of  escape for different values of  ,1 
and 0t - fl = 1. Three characteristic times can be distinguished: ~, fl, and the 
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Fig .  2. ( a )  Escape probabilities and (b) mean escape times for the linear system with a = 2 ,  

f l  = l ,  and different values of the correlation time of the noise. 

one associated with the noise, 1/2. For a very slow noise, i.e., 1/2>>ct-fl ,  
trajectories with. initial condition +,4 escape immediately without any 
switch of the noise value. If the initial condition is --A, the probability of  
escape will tend to the probability of  return to the initial value. It is 
remarkable that this return probability is different from zero, because the 
lower limit of  the interval is the steady state 0, and, for large but finite 1/2, 
the noise will switch with probability one. The limits 2 ~ 0 and a ~ 0 
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obviously do not commute: if one first sets 2 ~ 0 keeping a small but 
different from zero, then the noise becomes constant in time and therefore 
Pb(Xo) = 0, whereas from (33) we see that a ~  0 followed by 2 ~ 0 gives 
Pf(xo)  =fl/a. On the other hand, if 2 ~ o% one recovers the deterministic 
system. This is so since the dichotomous noise becomes a white noise when 
simultaneously 2 and A go to infinity/v) but if the correlation time is set 
equal to zero while keeping A finite, one ends up with a white noise of zero 
intensity, obtaining Pb(xo) = 0 for the values of 0c and fl corresponding to 
Fig. 2a. 

Now, by differentiating f ~  we obtain the conditional M F P T  of 
crossing b: 

(oc2 + p2 b 

T ~ . ( X o ) = ) ~ _ ~  log-~o , oc>~ 
20q~ b (35) 

( ~ - - ~ l O g ~ o ,  ~ < f l  

(ot2+lY z, b .  ct+fl  

T b ( X ~  2ctfl �9 b . ~ + f l  (36) 

Notice that the escape times diverge to infinity at the bifurcation point 
0~ = p. This divergence is interpreted as a true critical slowing down: all tra- 
jectories escape with probability one, but, on average, they take an infinite 
time. It is easy to see that the constant terms in T~- are the mean times 
needed to come back and cross the initial point x0. Since this can only 
occur when the noise value is + A, the nonconstant terms are the same in 
T~- and T~-, and-these are precisely the terms that do not depend on 2. 

Averaging over the two possible initial conditions of the noise, we 
obtain (Fig. 2b) 

(0~2+p2,  b . ~ + p  

) a -~-f i -  J~ ~o + 22(et _ fl), ~>fl 
Tb(x~ = | 2o~fl , b . o~ + fl (37) 

( ~ - - ~  l~ ~oo + 22( f l_  ct), ~ < f l  

The case 0c > fl is remarkable since the behavior of the mean escape 
time is somehow counterintuitive. Consider, for instance, the term in 
T~-(xo) independent of Xo, i.e., T.~(Xo)= (et+fl)/2(0t-fl) .  In terms of the 
original variables of the system, ~ > f l  means c <  0, and T.~(xo)= A/2 Icl. 
Increasing Icl, the tendency to move toward zero also increases and there- 
fore one would expect that the time to return to Xo would become larger. 
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On the contrary, T~o(Xo) decreases !. Recalling that T~o(Xo) is by definition 
a conditional average, this result indicates that, for large Icl, the trajectories 
that actually return to x o are those which do not move very far from x o. 

4. C O N C L U S I O N S  

We have extended the existing results on escape statistics under the 
action of a dichotomous noise to situations including the existence of true 
stationary points of the forces acting upon the system, i.e., fixed points of 
the stochastic flow, and different boundary conditions. With this we think 
that the one-dimensional case is completely solved. 

Using our general results on exit probabilities and the stability of the 
fixed points, we can draw the bifurcation diagram for all one-dimensional 
ssystems. The advantage of using the dichotomous noise is that we obtain 
the exit probabilities and the conditional mean first passage times analyti- 
cally, and this, together with the calculation of the stationary probability 
distributions with support in the invariant sets, leads to a complete descrip- 
tion, for the first time for a nonwhite noise, of the evolution of the 
stochastic system. 

In that sense we claim that, for many practical purposes, the 
asymptotic study (mainly the bifurcation diagrams and the stationary 
densities) is not enough to describe stochastic systems, and consider that a 
knowledge of escape probabilities and exit times is essential for a full 
understanding of th behavior of the system. 

A P P E N D I X  

Equations (3) and (4) can be derived using a recurrence argument. Let 
f ~ ( t  I Xo; n) be the probability of escaping through b after n noise switches 
with initial condition for the noise + zl. From Fig. I it is not difficult to 
write the following recurrence equation, for all n/> 1: 

i,T+(xo~b) 
f ~ ( t  I Xo; 2n)=Jo dt~ 2e-~' f~( t  - t~ I ~b'~.(Xo); 2 n -  1 )O( t - t~)  

(A1) 

where O(x) is the Heaviside step function, ~+(x) is the flow or time 
evolution induce~i by F+,  and 

f~ 
' dx' 

T+(x--*y)= F§ 

is the time to go from x to y under this flow. 
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Taking the Laplace transform of (A1) 

~+ r T+(xO~b) 
fb  (s I Xo; 2n)= dtl 2e-I~+~)"?-Jt, (s I ~b"(Xo); 2 n -  1) (A2) 

"0 

and with the change of variable xi = ~b'+(Xo) one finally has 

~+ f b  f ; ( s l x o ; 2 n ) =  dxl 2e_~+.~r+~.~o~,.,~;(s. l X l ; 2 n _ l  ) (A3) 
.,-o F+(xl)  

The probability of escaping before any noise switch is easily calculated as 

f ~ ( t  I Xo; 0) = e -a' 6 ( t -  T+(x o --, b)) (A4) 

and summing (A3) over n plus the Laplace transform of (A4), one obtains 
(3). A similar argument for f ; - ( t  I Xo) leads to Eq. (4). 
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